Skip to main content

5 posts tagged with "dbt Cloud"

Using dbt Cloud to build for scale

View All Tags

Up and Running with Azure Synapse on dbt Cloud

· 11 min read
Anders Swanson

At dbt Labs, we’ve always believed in meeting analytics engineers where they are. That’s why we’re so excited to announce that today, analytics engineers within the Microsoft Ecosystem can use dbt Cloud with not only Microsoft Fabric but also Azure Synapse Analytics Dedicated SQL Pools (ASADSP).

Since the early days of dbt, folks have been interested having MSFT data platforms. Huge shoutout to Mikael Ene and Jacob Mastel for their efforts back in 2019 on the original SQL Server adapters (dbt-sqlserver and dbt-mssql, respectively)

The journey for the Azure Synapse dbt adapter, dbt-synapse, is closely tied to my journey with dbt. I was the one who forked dbt-sqlserver into dbt-synapse in April of 2020. I had first learned of dbt only a month earlier and knew immediately that my team needed the tool. With a great deal of assistance from Jeremy and experts at Microsoft, my team and I got it off the ground and started using it. When I left my team at Avanade in early 2022 to join dbt Labs, I joked that I wasn’t actually leaving the team; I was just temporarily embedding at dbt Labs to expedite dbt Labs getting into Cloud. Two years later, I can tell my team that the mission has been accomplished! Kudos to all the folks who have contributed to the TSQL adapters either directly in GitHub or in the community Slack channels. The integration would not exist if not for you!

How we're making sure you can confidently go "Versionless" in dbt Cloud

· 10 min read
Michelle Ark
Chenyu Li
Colin Rogers

As long as dbt Cloud has existed, it has required users to select a version of dbt Core to use under the hood in their jobs and environments. This made sense in the earliest days, when dbt Core minor versions often included breaking changes. It provided a clear way for everyone to know which version of the underlying runtime they were getting.

However, this came at a cost. While bumping a project's dbt version appeared as simple as selecting from a dropdown, there was real effort required to test the compatibility of the new version against existing projects, package dependencies, and adapters. On the other hand, putting this off meant foregoing access to new features and bug fixes in dbt.

But no more. Today, we're ready to announce the general availability of a new option in dbt Cloud: "Versionless."

How to integrate with dbt

· 9 min read
Amy Chen

Overview

Over the course of my three years running the Partner Engineering team at dbt Labs, the most common question I've been asked is, How do we integrate with dbt? Because those conversations often start out at the same place, I decided to create this guide so I’m no longer the blocker to fundamental information. This also allows us to skip the intro and get to the fun conversations so much faster, like what a joint solution for our customers would look like.

This guide doesn't include how to integrate with dbt Core. If you’re interested in creating a dbt adapter, please check out the adapter development guide instead.

Instead, we're going to focus on integrating with dbt Cloud. Integrating with dbt Cloud is a key requirement to become a dbt Labs technology partner, opening the door to a variety of collaborative commercial opportunities.

Here I'll cover how to get started, potential use cases you want to solve for, and points of integrations to do so.

How we built consistent product launch metrics with the dbt Semantic Layer

· 9 min read
Jordan Stein

There’s nothing quite like the feeling of launching a new product. On launch day emotions can range from excitement, to fear, to accomplishment all in the same hour. Once the dust settles and the product is in the wild, the next thing the team needs to do is track how the product is doing. How many users do we have? How is performance looking? What features are customers using? How often? Answering these questions is vital to understanding the success of any product launch.

At dbt we recently made the Semantic Layer Generally Available. The Semantic Layer lets teams define business metrics centrally, in dbt, and access them in multiple analytics tools through our semantic layer APIs. I’m a Product Manager on the Semantic Layer team, and the launch of the Semantic Layer put our team in an interesting, somewhat “meta,” position: we need to understand how a product launch is doing, and the product we just launched is designed to make defining and consuming metrics much more efficient. It’s the perfect opportunity to put the semantic layer through its paces for product analytics. This blog post walks through the end-to-end process we used to set up product analytics for the dbt Semantic Layer using the dbt Semantic Layer.

Why you should specify a production environment in dbt Cloud

· 5 min read
Joel Labes
You can now use a Staging environment!

This blog post was written before Staging environments. You can now use dbt Cloud can to support the patterns discussed here. Read more about Staging environments.

The Bottom Line:

You should split your Jobs across Environments in dbt Cloud based on their purposes (e.g. Production and Staging/CI) and set one environment as Production. This will improve your CI experience and enable you to use dbt Explorer.

Environmental segmentation has always been an important part of the analytics engineering workflow:

  • When developing new models you can process a smaller subset of your data by using target.name or an environment variable.
  • By building your production-grade models into a different schema and database, you can experiment in peace without being worried that your changes will accidentally impact downstream users.
  • Using dedicated credentials for production runs, instead of an analytics engineer's individual dev credentials, ensures that things don't break when that long-tenured employee finally hangs up their IDE.

Historically, dbt Cloud required a separate environment for Development, but was otherwise unopinionated in how you configured your account. This mostly just worked – as long as you didn't have anything more complex than a CI job mixed in with a couple of production jobs – because important constructs like deferral in CI and documentation were only ever tied to a single job.

But as companies' dbt deployments have grown more complex, it doesn't make sense to assume that a single job is enough anymore. We need to exchange a job-oriented strategy for a more mature and scalable environment-centric view of the world. To support this, a recent change in dbt Cloud enables project administrators to mark one of their environments as the Production environment, just as has long been possible for the Development environment.

Explicitly separating your Production workloads lets dbt Cloud be smarter with the metadata it creates, and is particularly important for two new features: dbt Explorer and the revised CI workflows.